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Abstract-The antiplane strain problem of two dissimilar anisotropic composite wedges ofarbitrary
angles that are bonded together along a common edge is considered. The surfaces of the wedges can
be subjected to traction-traction. traction-displacement or displacemenHlisplacement boundary
conditions. The dependence of the order of the stress singularity on the wedge angles and material
constants is studied. The angular distribution of stresses at the apex and the exact full field stress
solutions are also investigated. Ellplicit solutions for the order of stress singularity are obtained for
~me spt.'Cial cases. It is found that the order of the stress singularity is always real for the antipl;lOc
dissimilar anisotropic wedge problem. This is quite different from the in-plane case. in which the
I:omplell type of stress singularity might ellist.

l. INTRODUCTION

The problem of finding the stress singularities at the apex of an isotropic elastic wedge was
first considered by Williams (1952) by using the eigenfunction-expansion method. Williams
found that the stresses near the apex arc proportional to ,-J. ,lOd the value of A. can be real
or complex in geneml. Tranter (194X) used the Mellin transform in conjunction with the
Airy stn:ss function rcpresentation of plane elasticity to solve for the isotropic wedge
prohlem. Williams (1959) ohtained the solution of dissimilar materials with a semi-infinite
crack. Il was discovered for the first time that the stresscs posscss a sharp oscillatory
character (i.e. complex ;.). Bogy (1971) used the Mellin tmnsform to treat the problem of
Iwo materially dissimilar isotropic elastic wedges of arbitrary ungles that arc bonded
together .dong a common edge and subjected to surface traction ut the boundary. A number
of other workers have studied similar problems (sec Dempsey and Sinclair, 19XI and
Erdogan and Gupta, 1972, for example).

Investigation of associated wedge problems for anisotropic muteriuls started from
Benthem (1963) and Sih et £II. (1965). Following the approach of Stroh (1958,1962). Ting
and Chou (19X I) and Ting (1986) studied the stress distribution neur the composite wedge
of anisotropic materials. Bogy (1972). Kuo and Bogy (1974a. 1974b) employed a complex
function representation of the solution (Green and Zerna. 1954) in conjunction with a
generalized Mellin transform to analyze stress singularities in an anisotropic wedge. Several
studies in this area have been made in the last decade (see Clements. 1971; Delale and
Erdog'IIl, 1979; Hoenig. 1982; Wang and Choi. 198241. b).

In this paper, antiplane strain problems ofgeneral anisotropic dissimilar clastic wedges
of arbitrary angles that arc assumed to be perfectly bonded together along a common edge
arc considered. Here the problem of traction (or displacement) prescribed on both wedge
f'lces. and the problem of traction prescribed on one face with displacement prescribed on
the other arc solved. The open two-dimensional regions occupied by the cross-sections of
two wedges of angles ~ and fl. and their common boundary lying in the positive x-uxis arc
shown in Fig. I. The problem will be solved by a straightforward upplication of the Mellin
transform in conjunction with the stress function. as performed by Tranter (1948) and Bogy
(1971. 1972). We focus our attention on the dependence of the order of the stress singularity
on the wedge angles. materi'll constants and boundary conditions. The angular dependence
of the stress field ncar the wedge and the full field stresses distribution are also analyzed.
Unlike the existence of the oscillatory chamcter (i.e. complex ;.) for the singular behavior
ncar the bimaterial wedge for the in-plane problem, we found that the order of stress
singularity;. is real for a general anisotropic bimaterial wedge of the antiplane strain
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Fig. l. Configuration of bonded dissimilar wedges.

problem subjected to different boundary conditions (i.e. traction-traction. displacement­
displacement. traction--displacement). Furthermore. if an "effective angle" is introduced.
then the order of the singularity for the general anisotropic material can be obtained easily
from the solution of the isotropic case.

2. STATEMENT OF PROBLEM AND GENERAL SOLUTION IN
MELLIN TRANSFORM DOMAIN

Let P. p* denote the open two-dimensional regions occupied by two wedges of angles
rx. II (7 + It ~ 21t) and A the straight segment of their boundaries in common as shown in
Fig. I. The remaining straight boundary segments arc denoted by B .md B*. For the
anti plane shear deformation. the only nonvanishing displacement component is along the
:-axis. lI'(x.y). In the absence of body forces. the equilibrium equution for a homogeneous
isotropic material is given by

The nonvanishing stresses arc

cJw
r,: = Jt or

(I)

(2)

(3)

The boundary conditions considered on the straight boundary segments B. B* could
be truction-traction. displacement-displacement or traction-displacement. In addition. we
sh.tll require the stress fields to satisfy the regularity conditions

(4)

The Mellin trunsrorm method is a very convenient tool for solving the boundary-value
problem and the form of this solution is particularly suitable for asymptotic analysis of the
stress field at the wedge apex. Let the Mellin transform of a function f(r) be denoted by
/(5) :

/(s). = M{f;s} =f' [(r),-'-I dr (5)

where s is a complex transform parameter. The Mellin transforms of w(r.O). rr,:(r.O).
"11;{r.O) with respect to r are denoted by li·(s. 0). i,:(s. 0) and ill:(.~.0). Thus
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Ji·(s,O) = i>: »,(r, O)r'- I dr

t9:(S,0) = f' t'1/:(r, O)r' dr.

1:!97

(6)

(7)

(8)

By use of the inversion theorem for the Mellin transform, the stresses and displacement
components are given by

1 i..... ';c
»,(r.O) = -2. .v(s, (J)r- S ds

Jrl P-;1O

(9)

( 10)

(11 )

Because ofcondition (4), the path of integration in the complei< line integmls Re (s) = p
in (9), (10) and (II) must lie within .1 common strip of regularity of their integrands. the
choice of I' is taken to be

I' = -t: 0 < t: < (IRe (sdl> ( 12)

where s I denotes the location of the pole in the open strip - I < Re (s) < 0 with the largest
real part and Re denotes the real part of the complex: argument.

Applying the Mellin transform (6) to (I) yields an ordinary dil1crential equation for
~I·. the general solution of which is

Ji·(s.O) = o(s) sin (sO) +b(s) cos (sO) (13)

in which the functions a(s) and b(s) are to be determined through the transforms of the
boundary and continuity conditions. The stress components in the transformed form appear
as

tr:(s,O) = - Jl.nv(s. 0) (14)

(15)

3. ASYMPTOTIC BEHAVIOR AND THE STRESS SINGULARITIES AT WEDGE APEX

We will discuss the three possible combinations of boundary conditions separately.

Cas(' I. Traction-traction boundary condition
Perfect bonding along the interface (} = 0 is ensured by the stress and displacement

continuity conditions, and the traction boundary conditions on the other wedge segments
are given as follows.
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t::(r, -:x) = t·(r), tll:Cr, (3) = t(r),

t3:{r, 0) =tll:(r, 0), w·(r, O) =w(r,O). ( 16)

(n (16), t·(r) and t(r) represent the shearing tractions prescribed on B· and B. Sub­
stitution oft 13)-(15) into the Mellin transform 01'(16) provides the following four equations
for the four unknown functions a·(s), h·(s), a(s), b(s) :

p·a·(s) cos (:%5) +/t·b·(s) sin (:%5) = I·(s)/s

IUl(S) cos (ps) - Itb(s) sin ((3s) = I(s)/s

It·a·(s) -lla(S) = 0

b·(s) -b(s) = 0 (17)

where I·(s), I(s) denote the Mellin transforms oft·(r) and t(r). The solution of (17) together
with (13)-(15) determine the exact solutions of stresses i:'(s, 0), i,f:(s,O), and i,:(s, 0),
i,I:(s,O) in the transformed form on -:x < 0 < 0 and 0 < 0 < p. respectively.

I
ir:(s.O) = - D {[/ti·(S) sin (/ls) + It·/(s) sin (:xs)] sin (sO)

+ [/ti·(S) cos ((ls) - Id(s) cos (as)] cos (sOn (18)

i,,:(s.O) =~ ([JtI·(s) sin (ps) +Il·/(s) sin (IXS)] cos (sO)

- [llI·(s) cos ((Is) - It/(s) cos (!Xs)l sin (sO)} (19)

in which

D(7., II, Il·, It,S) =p. sin (7.s) cos (/Js) +Jl sin (/ls) cos (:xs). (20)

Expressions similar to thosc in (18) and (19) follow in the sume manner for i~(.~, 0) und
itf:(.~, 0). From (18) and (19), it is clear that ir:<.~, 0), io:(s, 0) etc., arc meromorphic functions
of s for fixed 0 in - I < Re (5) < () whose poles can occur only at the zeros of D(s) in the
open strip. We can now indicatc the appropriute path of integration for the inversion
integrals in (10) and (II). We muy then choose the path of integration for the inversion
integrals to lie within the common strip of regularity Re(s.) < p < 0 with SI denoting the
zero of D(s) with the largest real part in the strip.

The largest contribution for the asymptotic behavior of the stress field as r -+ 0 depends
on the location of the largest real rool sial' D(s), and is given by

lim t,:(r, 0) = lim r -(H n(s -Sl )i,:(s, 0) +o(r .i.), 0 < 0 < #
'_0 .1-_.'11

where

i.' A (5) [ •=r - Itm --;-- cos (sO) - R tan (s:x) Sill (.\'0)]
'-'. D (s)

lim r:'(r,O) = lim r- IH 1l(s-sl)i:'(s,O)+o(r-"), -IX < 0 < 0
' .... 0 -f-"l

". A(s) . ]=r" .!~~ D'(s) R[cos (sO) - tan (s:x) SIO (sO)

(21 )

(22)
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A(s) == - p[l*(s) cos (sfJ) - I(s) cos (sx)]

and primes denote differentiation with respect to s. If Sl is a simple zero of D(s). then the
type of singularity will be of the order ;. == Re (s I) + I. Obviously if s I is a complex zero.
then the stress fields are oscillatory in the limit r -+ O. If no zero of D(s) occurs in
- I < Re (s) < O. but dD(s)/ds == 0 at s == - t. then it will have a logarithm type singularity.
Hence. determining the location of the zeros of the function D(s) in the strip
- I < Re (s) < 0 is our principal task, It is shown in the Appendix that the zeros of D(s)
are always real for any combination of material constants and wedge angles. so that the
possibility of the oscillatory singular behavior is precluded, The jump value of t,= near the
interface as r -+ 0 will be

I· [ (0"") *( 0-)] (I R) -Is,"" Il A(sd1m r,= r. -r,= r. == - r D'( )'
,-0 Sl

Equation D == 0 in (10) can be rewritten as

sin «a+ fJ)s] 1-R
sin [(a-fJ)s] = I +R

(23)

where R = JI*/JI is the nitio of the shear moduli of the two materials. Here solutions for s
depend on the single bimaterial panlmeter R and the wedge angles a. fl. In order to recover
some previously known results. we examine D(,~) for various limiting cm,es. If the material
in P is infinitely rigid. then we must consider the limit JI -+ 00 with JI* constant. If the
material in p. is assumed to have no rigidity. then we must consider the limit p* -+ 0 with
II constant. The limit R -+ 0 descrihes !'loth of these two limiting cases ;md (23) becomes in
this limit sin (fls)c()s(a.~) :::: O. Equating the first factor to zero. sin lis == 0, we recover the
solution of an elastic wedge of angk II suhject to the traction ·tmction boundary condition.
By setting the second fal.:tor to lero. cos as == O. the problem reduces to that of a wedge of
angle 1 with one face rigidly clamped and the other I~lce subjected to the traction boundary
condition. Suppose that the shear moduli of the m.tterials occupying p. <UKI P arc the
same. that is R = I and a+fl == ". It is not dillicult to verify that D(s) == 0 can be written
as sin (}'s) :::: O. For the case of equal angle wedges, i.e. ex = fJ. we have sin 2!XS == 0 or
;. == I - re/2a. hence the order of stress singularity is independent of the two muterial
const'lOts JI and II·. When x == fl == re, the problem becomes that of two dissimilar materials
with cracks or laull lines along their common interface and the familiar square root
singul<trity is obtained.

We now turn to the numerical computation of the zeros of D(s) as given in (23). The
results of the numeric••1comput<ttions are given in Figs 2 and 3, which show the dependence
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Fig. 2. Dependence of Ihe order ofstress singularity l on IX. fJ and R( = 0.5) for the traction-traclion
boundary condition.
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Fig. 3. Dependen.:e of the l1rder of stress singularity). on iX. Pand R( '" 0.1) for the traction-traction

boundary condition.

of the order of stress singularity;' on R = Jj*hI (= 0.5,0.1) for various values of~, p. When
curves corresponding to different values of A. overlap, i.e. when multiple roots occur in
o< A. < I. it is understood th'lt the lurger value of A. is plotted which controlled the
asymptotic stress as r -+ O. The angular dependence of stresses neur the wedge apex for
~ = It, P= 1t/2 and R = 2 'lS shown in (21) and (22) [only the angular dependent term is
c'llculuted. e.g. cos (sO) - R tan (sO) sin (sO) in (21)1 is plotted in Fig. 4. The shear stress t//:

is continuous on the bonded edge 0 = 0 while t r : is discontinuous at the interfuce.
The exuet full field shear stresses of t r : and til: arc computed numerically for IX = 1[,

{I = 1[/2 und R = 2. The specific louding considered here is that of a uniform shear stress
til: with unit magnitude upplied from r = 0 to r = I on the boundary Band B*, Thus. the
load functions on the boundary will be

t*(r) = II(I-r), t(r) = -H(I-r)

where II is the HeLlviside function, The results of the computLltions of stresses Lllong the
bonded edge 0 = 0 .tnd diflcrent angles 0 = 30'" 60U and the stresses ncar the wedge
boundary 0 = 75",80', 85 u arc exhibited in Figs 5 and 6.

Case fl. Trtlction-displtlcemeflt hOllfldary condition
Here the problem of traction prescribed on one face with displacement prescribed on

the other is solved. The solutions presented follow the outline established previously. Thus
we consider the following boundary conditions,

Shear Modulus' Ratio =2.0
4.5...---------.-----.

-45 L..-:::----:---::---::--I..::----.--J
'-180° -135° -90· -45· 0° 45· 90·

e
Fig. 4. The angular dislribution of stresses f", and f" of the asymptotic behavior as ,. - 0 for the

traction-traction boundary condition (2 '" It. P= 11/2. R = 2.0).
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Fig. 5. Stresses Tn, and t" ofdissimilar isotropic wedges with a half plane bonded to a quarter plane
for 1:1 = 0', 30° and 60'.

1I'·(r. -oc) = W·(r)

tH:(r, fI) = t(r).

The solulions of slresses in lhe lransformed form is given by

(24)

!r:(s.O) = - ~. ([.I·lt· W· sin (41) + Rl(s) cos (soc)] sin (sO)

+ [sit· ~V· cos (sfl) + l(s) sin (scc) I cos (sO): (25)

!//:(s.O) = ~ ([sld~·· sin (sll) + l(s) cos (soc») cos (sO)

- [Sit· ~V· cos (sll) + l(s) sin (soc») sin (.I·O)} (26)

where

D(s) = It· cos (ocs) cos (ps) -It sin (as) sin ({Is).

The rools of (27) musl salisfy lhe equalion

R~= 1.5 R=2.0

Il=Y2
1.5.------------.

(27)

1.0 J

1: 9=75
2: 9=80
J: 9=85

-1.5~--::~-_:__~----.J
0.0 G8 1.6 2.4 J,2 4.0

r

Fig. 6. Stresses To: and t,: of dissimilar isotropic wedges with a half plane bonded to a quarter plane
for 1:1 = 15",80' and 85'.
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Fig. 7. Dependence of the order of stress singularity ,t on l. II and R( = 0.5) f(lr the traction­

displacement boundary eondith>n.

cos [(7+P>S] 1- R
cos-[(;- Jlh1 = 1+ R'

(2X)

Equation (2X) does not change by interchanging 7 and II, hence the order ofstress singularity
i. as shown in Figs 7 and 8 is symmetric with respect to the line:x = II. for Ct + II = c, then
the case of equal angle Ct = II = e/2 has the largest value of ;. and hence the most severe
stress singularity. For equal'lI1gle wedges, that is:x = II. we have col'~ .1'7 = It/1t*. Hence the
order of singularity for this case is

, 1t I
It = I --- + . tan

2x Ct
I ('t)' ~

It*

For the crack geometry, Ct = {I = n, the order of stress singularity is in agreement with that
obtained by Ting (1986), that is

Shear Modulus' Rat io =0.1

0

O· " ,
"

..I ", ,

d ~

T 'a ~,

0
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\: ~ ~ "o ~~ -.....
,,..~~ - -......j "-o 0

O· 60 120" 180· 2400 300· 360·

B
Fig. 8. Dependence of the order of stress singularity ,t on ~. II and R( = 0.1) for the traction­

displacement boundary condition.
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Shear Modulus'Ratio=0.5
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Fig. 9. The angular distribution of stresses t.: and t,: of the asymptotic behavior as r - 0 for the

traction-displaccment boundary condition (It = It. fJ = rci2. R = 0.5).

1303

(29)

The dependence of the order ofsingularity A. on the material property for the interfacial
crack is shown in (29). if the two materials are the same (Jt = Jt*). then we have the familiar
valuc of ;. cqual to 3/4. Thc asymptotic behavior of thc stress field is givcn by

( ... ,. B(s) . J I
lim r,: = lim' .. '(s -s. )r,:(.~.0) = ,"hm D'( [cos (sO) + R cot (stX) Sill (.~( ) •
r ,.0 .1' '.f I .f 1"1 .'t)

(30)

lim r~ = lim ,.(.+ I}(s-sl)i~(.\·.0) = ,-.llim B~s) R[cos (sO) +cot (ocs) sin (sO)]. (32)
,~ll .•...• , '-'1 D (s)

where

B(s) = - p[sp* ~V* cos (sP> + I(s) sin (sa)].

The stress component to: is continuous at 0 = 0 (t3:(r.O') = to:(r.O+)} while r,: is dis­
continuous there. From (30) and (32). the jump value of r,: will be

I'· [ (0+) *( 0-)] (t R) -(', + I) B(SI)1m t,: r. -t,: r. = -, -D-;-(-)"
'_0 SI

(34)

The angular dependence ofstresses near the wedge apex for a = 1t. P= 1t/2 and R = 0.5.
2.0 are shown in Figs 9 and to.

Case III. Displacement-displacement boundary condition
We consider displacements prescribed at the boundary faces 0 = -a and (J = Pof the

form.

SIS l~:l1-£
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Shear Modulus' Ratio: 2.0

3.0r----------r-------,
A. :0.608

2.5

2.0
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~ 1.5..

V'l

1.0
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_180° -135° _90° -45" 0° 90°

e
Fig. 10. The angular distribution of stresses t., and t" of the asymptotic behavior as , - 0 for

traction-<lisplacement boundary condition (!l = It. P= 1t/2. R = 2.0).

w·(r. -IX) = W·(r).

w(r. fJ) = W(r). (35)

The stress solution in the transformed form will be

sll • •
iJf.O) = - D {It ·[W cos (SIX) - W· cos (sfl)) sin (sO)

+ [11 ~V sin (SIX) +11· ~V· sin (s{l) I cos (sO)}

sp _ .
i,ds.O) = D {It ·[ W cos (s!X) - W· cos (s{l») cos (sO)

- Ut ~V sin (srx) +II· ~V· sin (sll)]}

where

D(s) = 11· sin (sfl) cos (SIX) +1l cos (sP> sin (SiX).

then D(.I') = 0 yields

sin [(IX+II).I'] I-IIR
siOR;:-{lj~f= I+I/R .

(36)

(37)

(38)

Equation (38) has exactly the same form as (23) except replacing R with II R. The asymptotic
stress lIeld is very similar to that in (30)-(33) except that 8(.1') is replaced by C(s) = -s11[11 ~V

sin (SIX) +It· W· sin (sP>] and D'(s) = (It·P +ItIX) cos (SiX) cos (sll) - (11·rx + llP> sin (SiX) sin
(s{f).

4. STRESS SINGULARITIES AT ANISOTROPIC BIMATERIAL WEDGE

In this section. the problem for two dissimilar anisotropic wedges of arbitrary angle is
formulated. The method employs the complex representation of the antiplane anisotropic
elasticity solution in conjunction with a generalization of the Mellin transform. This method
has been used by Bogy (1972) and Kuo and Bogy (1974a.b) on the in-plane problems.
Allention is also focused on the dependence of the order of the power singularities in the
stress field at the apex on the wedge angle and material constants. If the plane of elastic
symmetry is assumed to be normal to the =axis. then there arc only three relevant coefficients
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"44. "4j and "55 to be considered. The stress components are related to the displacement as
follows

ow aw
• \'- = C~4 -:;- +c4sT'.- oy LX

The corresponding displacement equation of equilibrium is

The governing equation (41) can be solved in the complex plane = = x+py such that

w(x.y) = 2 Re [U(=)].

(39)

(40)

(41)

(4:!)

where U is an aroitrary function of =and p is a value dependent on the elasticity constants.
Substitution of (4:!) into (41) yields p must sutisfy the churacteristic equation

(43)

Iklll;c

It is expedient to define

so that the shear stresses may be written simply as

t.G = - (pcP +Ptft),

where the ovcrlinc denotes the complex conjugate. Consider the stress transformation

ttl: = t.v: cos O-t.•: sin 0,

t.: = t y : sin 0+ t ... cos O.

(44)

(45)

(46)

(47)

(48)

The solution of the problem is obtained by usc of an integral transform which is a
complex analogy to the standard Mellin transform. Following a procedure similar to Bogy
(1972), let U(s) be defined by

U(s) =1" U(=)='" I d= = (cos O+p sin 0)' LX) U(=)r,-I dr (49)

in which the path of integration is along a ray of fixed () and s is a complex transform
parameter. We obtain also from the conjugate of (49)
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(50)

From a formal integration by parts and with appropriately assumed behavior as r ..... 0 and
x. we have

lr -, sO(s)
U (!)r' dr = - ( 0 -' 0)'+ I .o cos +p sm

(51)

(52)

If the integral operation is applied to (42) and (47) and lise is made of (49)-(52) there
follows

in which

i (s 0) = _ iC[SO(S) _ sues)]
II: " H{(J} fi(O}'

• O(s) O(s)
w(s 0) =-- + -_----

• 1/(O} H(O} •

(53)

(54)

In thl: saml: definition us the isotropic cuse. ill:<'~' 0) is the Mellin transform with n:spcl;l
t() rofn",(r. 0). The tr'lction prescribed boundary conditions as shown in (16) in conjunction
with (5.\). (54) yield for the dl:termimltion of the four unknowns O(.~), O*(s} etc., for thc
following inhomogeneous system of four equations.

C*O*-C*O*-cO+cu = O.

O*+U*-O-U= 0,

0* U* f*(s)
H( -a.) - f/( -a.) = =ic*s'

o 0 I(s)

H({Ji - H(m = =To' (55)

This system Can be easily solved and the expressions for ioAs. O}. li-($. 0) now follow directly
from substitution of (55) into (53) and (54). This completes the formal solution for the
tmnsforms of thc stress and displacement components. As discussed in the isotropic matcrial
case in the previous section. the dependence of the order of the stress field singuhlrity on
the wedge angle and the material parameters is determined by the pole of the meromorphic
functionio:(s.O} etc., or the location of the zero of the following equation

or

(56)

where
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Jc:4c15 - (C:5)2Q= ,
JC"C55 - (C'5)2

J.. (.)2'
w C~4C55- C~S smoc

tan ~= '" "'..
CH COS ~+C4S sm ~
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(57)

(58)

(59)

It is surprising that (56) has exactly the same functional fonn as (23) for the isotropic
case. Here ~ and" are called the effective wedge angle that are defined in (58) and (59). Q
is the ratio of material constants of two wedges defined in (57). For the isotropic case.
C4S = 0 and CH = C55 = JI.. we have Q = JI."'/JI. = R. ~ = IX and" = {J. then (56) reduces to
the isotropic solution as shown in (23). For the interfacial crack problem. IX = {J = 11:. we
have an effective wedge angle ~ =" = 11:. so that an interfacial crack in a general anisotropic
muterial in the antiplane problem also gives rise to the square root singularity. As the order
of singularity in the present case sh.ues the same feature as that in the isotropic case. the
discussion will not be repeated here. However. it is worth mentioning again that the order
of the singulurity for the anisotropic bimaterial wedge is real for all cases. and that oscillatory
singular behavior is not presented.

The problem of traction prescribed on one face with displacement prescribed on the
other as shown in the boundary condition (24) can be analyzed in a similar way. The result
IS

cos [(~+,,)sl I-Q
coS[(~-,,)si= I +Q'

(60)

Again. (lIO) has exactly the S.lme functional form as (28) for Q. ~ and" defined in
(57) (59). For the special case of the interfacial crack problem. IX = P= 11:. the order of the
stress singularity can be expressed as follows.

(61)

Finally. for prescribed displacements at both boundary faces as indicated in (35). the
order of the stress singularity is obtained from solving the following equation

sin [(~+,,}s] l-IIQ
sin [(;-,,)sJ = I+l/Q' (61)

5. CONCLUDING REMARKS

The problem ofantiplane shear for dissimilar anisotropic bimaterial wedges was solved
by a straightforward application of the Mellin transform. Emphasis is placed on the
investigation of the order of the singularity and the angular dependence in the stress field
at the apex. It is shown in this paper that the order of the stress singularity A. is always real
for the antiplane anisotropic dissimilar wedge. This is a quite different matter from the in­
plane case. in which ;. may be complex. If an effective angle is introduced in the analysis
for the anisotropic case. then the characteristic equation which determines the order of the
stress singularity. has the same functional form as that for the isotropic case. These results
may simplify analysis of the antiplane anisotropic wedge problem.

Explicit solutions of the order of stress singularity were obtained for some special
cases. viz. equal angle wedge and interfacial crack problems. It has been shown that the
familiar square root singularity is obtained for dissimilar anisotropic materials with a crack



1308 CHlES-CHING MA and BAo-LLl{ HOt:R

having traction-traction and displacement-displacement boundary conditions. While for
the traction-displacement boundary condition, the order of stress singularity of dissimilar
anisotropic materials with cracks will depend on the material constants. For the anisotropic
crack problem of one material only, the order of stress singularity will bi:: 3/4. the same as
for the isotropic case.
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APPENDIX

From e~n (23)

We hilve

whcre

sin {(:z + 11)"1 I - R
Sin-fi~-=71):~j := I+R'

sin [(:z+{J).'1 = n sin «:x-flhl.

I-R
-I ~n =r+R~ l.

{AI}

(Al)

Assume IA2) has a compll:x root of the form .r = .\' + iy and x '" O. y "" O. then (Al) can be rewritten as follows

sin [(.I +{I)xl cosh [(x+/l)yl+i cos [(x+p>xl sinh [(:z+{I)YI

:= n sin {(:x-PhI cosh [(x-P)YI+in cos [(x-{lhl sinh [(:z-Plyl. (A3)

Equaling thc real and imaginary parts of (A3l yields



Dissimilar anisotropic wedges in antiplane shear

sin [(H/I)X] cosh [(2+/1).11] == Q sin [(x-/I);t] cosh [(x-/I)y).

cos [(:x+/I)x] sinh [(:x+p)y) == Q cos [(:X-/I)x) sinh [(:x-my].

Then (A~) and (AS) can be combined into the following equation

. : {COSh [(:X+Pl.~·)}1 2 {Sinh [(:I+ p)y)}2 _ •
Sin [(:x+p)x) cosh [(:x-Ph'! +COS [(2+1').\,) sinh [(2-(ll.V) - fr'.

Since I(x+p)yl > I(x-p)yl. hence

{
cosh [(x+p)YI}2 > I
cosh [(x-my) •

and

{
Sinh [(HIl)y]}2 I
sinh [(x-Il)y) > •
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(A~)

(AS)

(A6)

which makes the left hand side of (A6) greater than 1. But the right hand side of (A6) is always less than I and
we have a contradiction. If.\' == 0 and y #< O. from (A3) we also get a contradictory result. Hence the only possibility
of finding the solution of (A:!) is for x #< O• .II == 0 which indicates that the order of stress singularity is real and
this completes the proof.


