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Abstract—The antiplane strain problem of two dissimilar anisotropic composite wedges of arbitrary
angles that are bonded together along a common edge is considered. The surfaces of the wedges can
be subjected to traction-traction. traction-displacement or displacement-displacement boundary
conditions. The dependence of the order of the stress singularity on the wedge angles and material
constants is studicd. The angular distribution of stresses at the apex and the exact full field stress
solutions are also investigated. Explicit solutions for the order of stress singularity are obtained for
some special cases. Tt is found that the order of the stress singularity is always real for the antiplane
dissimilar anisotropic wedge problem. This is quite different from the in-plane case. in which the
complex type of stress singularity might exist.

l. INTRODUCTION

The problem of tinding the stress singularities at the apex of an isotropic clastic wedge was
first considered by Williams (1952) by using the eigenfunction-expansion method. Williams
found that the stresses near the apex are proportional to r % and the value of 4 can be real
or complex in general, Tranter (1948) used the Mellin transform in conjunction with the
Airy stress function representation of plane ¢lasticity to solve for the isotropic wedge
problem. Williams (1959) obtained the solution of dissimilar materials with a semi-infinite
crack. It was discovered for the first time that the stresses possess a sharp oscillatory
character (i.c. complex 2). Bogy (1971) used the Mellin transform to treat the problem of
two materially dissimilar isotropic clastic wedges of arbitrary angles that are bonded
together along a common edge and subjected to surface traction at the boundary. A number
of other workers have studied similar problems (see Dempsey and Sinclair, 1981 and
Erdogan and Gupta, 1972, for examplce).

Investigation of associated wedge problems for anisotropic materials started from
Benthem (1963) and Sih er al. (1965). Following the approach of Stroh (1958, 1962), Ting
and Chou (1981) and Ting (1986) studied the stress distribution near the composite wedge
of anisotropic materials. Bogy (1972), Kuo and Bogy (1974a, 1974b) employed a complex
function representation of the solution (Green and Zerna, 1954) in conjunction with a
generalized Mellin transform to analyze stress singularities in an anisotropic wedge. Several
studies in this arca have been made in the last decade (see Clements, 1971 ; Delale and
Erdogan, 1979 ; Hoenig, 1982 ; Wang and Choi, 19824, b).

In this paper, antiplane strain problems of general anisotropic dissimilar elastic wedges
of arbitrary angles that are assumed to be perfectly bonded together along a common edge
are considered. Here the problem of traction (or displacement) prescribed on both wedge
faces, and the problem of traction prescribed on one face with displacement prescribed on
the other are solved. The open two-dimensional regions occupied by the cross-sections of
two wedges of angles « and ff, and their common boundary lying in the positive x-axis are
shown in Fig. 1. The problem will be solved by a straightforward application of the Mellin
transform in conjunction with the stress function, as performed by Tranter (1948) and Bogy
(1971, 1972). We locus our attention on the dependence of the order of the stress singularity
on the wedge angles, material constants and boundary conditions. The angular dependence
of the stress field near the wedge and the full ficld stresses distribution are also analyzed.
Unlike the existence of the oscillatory character (i.e. complex 4) for the singular behavior
near the bimaterial wedge for the in-plane problem, we found that the order of stress
singularity 4 is real for a general anisotropic bimaterial wedge of the antiplane strain
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Fig. I. Configuration of bonded dissimilar wedges.

problem subjected to different boundary conditions (i.e. traction—traction, displacement-
displacement. traction—displacement). Furthermore, if an “effective angle™ is introduced,
then the order of the singularity for the general anisotropic material can be obtained easily
from the solution of the isotropic case.

2, STATEMENT OF PROBLEM AND GENERAL SOLUTION IN
MELLIN TRANSFORM DOMAIN

Let £, P* denote the open two-dimensional regions occupied by two wedges of angles
o, ff (x+f < 2r) and A the straight segment of their boundarics in common as shown in
Fig. 1. The remaining straight boundary segments are denoted by B and B*. For the
antiplane shear deformation, the only nonvanishing displacement component is along the
z-axis, w(x, ¥). In the absence of body forees, the equilibrium cquation for a homogeneous
isotropic material is given by

Pw Law 13D

ATy TN oy Ty = 0- l
0r'+rﬂr+r‘(’l' ol
The nonvanishing stresses are
ow 2
T, = Jl 2
Hor
i ow
Ty = = 7. 3
T r o0 )

The boundary conditions considered on the straight boundary segments B, B* could
be traction-traction, displacement-displacement or traction-displacement. In addition, we
shall require the stress fields to satisfy the regularity conditions

Tl =00 ') as r—oxc for 3>0. 4)
The Mellin transform method is a very convenient tool for solving the boundary-value

problem and the form of this solution is particularly suitable for asymptotic analysis of the
stress ficld at the wedge apex. Let the Mellin transform of a function f(r) be denoted by

J):
fs) = M{fis} = J; Syr-tdr (5

where 5 is a complex transform parameter. The Mellin transforms of w(r.8), r1..(r, ),
rig.(r, 8) with respect to r are denoted by w(s. §), 7,.(s.6) and 7,.(s,8). Thus
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Wwis.0) = j: w(r,0)r~' dr 6)
]
t,.(s,0) = J.t ,.(r.0) dr )
)
Te:(5,0) = J ) t5:(r, 0)r dr. 1t
0

By use of the inversion theorem for the Mellin transform. the stresses and displacement
components are given by

l FTENE)
w(r.0) = I J. ‘ wis,r° ds )
p—i0
‘ p+in
1,.(r.0) = I t.(s, ) ' dys (10)
(il
l P+HIC
Ty(r. ) = 5 J fo (5. yr 7 ds. (H
g -

Because of condition (4), the path of integration in the complex lincintegrals Re (s) = p
in (9). (10) and (11) must lic within & common strip of regularity of their integrands, the
choice of p is taken to be

p=—¢ 0<£<(|R¢ )N “2)

where s denotes the location of the pole in the open strip — 1 < Re (s) < 0 with the largest
real part and Re denotes the real part of the complex argument.

Applying the Mellin transform (6) to (1) yickds an ordinury differential equation for
W, the general solution of which is

wis, 0) = a(s) sin (s8) + b(s) cos (s)) (13)
in which the functions a(s) and b(s) are to be determined through the transforms of the

boundary and continuity conditions. The stress components in the transformed form appear
as

T,.(5,0) = — (s, 0) (14)
dvi(s, 0
£0.(5.0) = '“7(1%"")” (15)

3. ASYMPTOTIC BEHAVIOR AND THE STRESS SINGULARITIES AT WEDGE APEX

We will discuss the three possible combinations of boundary conditions separately.

Case 1. Traction-traction boundary condition

Perfect bonding along the interface § = 0 is ensured by the stress and displacement
continuity conditions, and the traction boundary conditions on the other wedge segments
arc given as follows.
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th(r, —2) = t*(r), 14 (r. B) = #(r).
13:(r.0) = 1,.(r. 0).  w*(r.0) = w(r.0). (16)

In (16). t*(r) and t(r) represent the shearing tractions prescribed on 8* and B. Sub-
stitution of (13)~(15) into the Mellin transform of (16) provides the following four equations
for the four unknown functions a*(s). b*(s). a(s). b(s):

n*a*(s) cos (as)+pu*b*(s) sin (x5) = 1*(s)/s
pa(s) cos (Bs) — ub(s) sin {fs) = i(s)/s
wra*(s)—pa(s) =
b*(s)~b(s) =0 (17
where 7*(s5). 7(5) denote the Mellin transforms of 1*(r} and #{r). The solution of (17) together

with (13)-(13) determine the exact solutions of stresses t2(s,8). Th(s.0), and 7,.(s.9),
Ty, (s, 0) in the transformed formon —x < 8§ < 0 and 0 < 0 < f§, respectively.,

1
ts. ) = — D i *(s) sin (Bs) +p*(s) sin (as)] sin (s0)

+ [ * () cos (fs) = pui(s) cos (as)] cos (st} (18)

T (5. 0) = é{[;u’ *(s) sin (fis) + p*i(s) sin (as)] cos (st

—[pi* () cos (fis) — pi(s) cos {a¥)] sin (st} (19)
in which
D(x, B, 1t*, i, 8) = p* sin (as) cos (fis) + g sin (fis) cos {(xs). (20

Expressions similar to those in (18) and (19) follow in the same manner for £%(s, 0) and
th(s, 0). From (18) and (19), itis clear that 7,.(s, 0), 14.(s, 0) etc., are meromorphic functions
of s for fixed 0 in — 1 < Re(s) < 0 whose poles can occur only at the zeros of D(s) in the
open strip. We can now indicate the appropriate path of intcgration for the inversion
integrals in (10) and (11). We may then choose the path of integration for the inversion
integrals to lie within the common strip of regularity Re(s) < p < 0 with 5, denoting the
zero of D(s) with the largest real part in the strip.

The largest contribution for the asymptotic behavior of the stress field as r — 0 depends
on the location of the lurgest real root s, of D(s), and is given by

!in;} To(r 0) = limr 8 V(s —5,)i,.(5, 0) +o(r 4, O0<O<f

=r*l ! g w[(.os (s0) — R tan (sa) sin (s0)] (¢4}
hm rrr,0) = hm rrer s )R, D +o(rY), —a<l<0
r~* lim Al) R[cos (s6)) — tan (sa) sin (s0)] 22
s=u D'(s)

where
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A(s) = —p[f*(s) cos (sB)—1(s) cos (s2)]

and primes denote differentiation with respect to s. If 5, is a simple zero of D(s). then the
type of singularity will be of the order 2 = Re (s,)+ 1. Obviously if 5, is a complex zero,
then the stress fields are oscillatory in the limit » — 0. If no zero of D(s) occurs in
—1 < Re(s) < 0.butdD(s)/ds = Oats = — I, then it will have a logarithm type singularity.
Hence, determining the location of the zeros of the function D(s) in the strip
—1 < Re(s) < 0 is our principal task. It is shown in the Appendix that the zeros of D(s)
are always real for any combination of material constants and wedge angles. so that the
possibility of the oscillatory singular behavior is precluded. The jump value of 1, near the
interface as r — 0 will be

. Afsy)
+Y o X "} = — =g+ 1y AT
EL"& [t:Ar. 0" ) —12(r.07)] = (1 - R)r DGy

Equation D = 0 in (20) can be rewritten as

sin [{(a+ B)s] _I=R

sin [(x—f)s]  1+R @3

where R = p*/u is the ratio of the shear moduli of the two materials. Here solutions for s
depend on the single bimaterial parameter R and the wedge angles «, f. In order to recover
somge previously known results, we examine D(s) for various limiting cases. If the material
in P is infinitely rigid, then we must consider the limit g -+ oo with u* constant. If the
material in P* is assumed to have no rigidity, then we must consider the limit g* -+ 0 with
i constant, The limit R — 0 describes both of these two limiting cases and (23) becomes in
this Hmit sin (fis)cos (2s) = 0. Equating the first factor to zero, sin fls = 0, we recover the
solution of an clastic wedge of angle f subject to the traction -traction boundary condition.
By setting the second factor to zero, cosays = 0, the problem reduces to that of a wedge of
angle 2 with one fuce rigidly clamped and the other face subjected to the traction boundary
condition. Suppose that the shear moduli of the materials occupying P* and P arc the
same, that is R =1 and 2+ f = 7. It is not diflicult to verify that D(s) = 0 can be wrilten
as sin{ys) = 0. For the case of equal angle wedges, ie. a = f, we have sin2ay =0 or
A= 1—mn/2z, hence the order of stress singularity is independent of the two material
constants g and g*. When 2 = ff = n, the problem becomes that of two dissimilar materials
with cracks or fault lines along their common interfuce and the familiar square root
singularity is obtained.

We now turn to the numerical computation of the zeros of D(x) as given in (23). The
results of the numerical computations are given in Figs 2 and 3, which show the dependence
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Fig. 2. Dependence of the order of stress singularity 4 on 2. § and R(= 0.5) for the traction—traction
boundary condition.
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Fig. 3. Dependence of the order of stress singularity 2 on «, § and R(= 0.1) for the traction—traction
boundary condition.

of the order of stress singularity 2 on R = u*/u (= 0.5, 0.1) for various values of 2, f. When
curves corresponding to different values of 4 overlap, i.e. when multiple roots occur in
0 < A< 1, it is understood that the larger value of A is plotted which controlled the
asymptotic stress as r — 0. The angular dependence of stresses near the wedge apex for
2= n, f=n/2and R =2 as shown in (21) and (22) [only the angular dependent term is
calculated, e.g. cos (sf) — R tan (x0) sin (+0) in (21)] is plotted in Fig. 4. The shear stress z,.
is continuous on the bonded edge ¢ = 0 while t,. is discontinuous at the interface.

The exact full field shear stresses of 1, and t,, are computed numerically for & = =,
fi = r/2 and R = 2. The specific loading considered here is that of a uniform shear stress
4. with unit magnitude applied from r = 0 to r = | on the boundary B and B*. Thus, the
load functions on the boundary will be

t*"(ny=H(1-r), H{r)=—-H{1-r)

where H is the Heaviside function. The results of the computations of stresses along the
bonded edge ¢ =0 und different angles 0 = 30°, 60° and the stresses ncar the wedge
boundary 8 = 75°, 80", 85" are exhibited in Figs S and 6.

Case I1. Traction-displucement houndary condition

Here the problem of traction prescribed on one face with displacement prescribed on
the other is solved. The solutions presented follow the outline established previously. Thus
we consider the following boundary conditions,

Shear Modulus’ Ratio=20
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Fig. 4. The angular distribution of stresses t,, and 1,. of the asymptotic behavior as # — 0 for the
traction-traction boundary condition (x = . f = /2, R = 2.0).
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Fig. 5. Stresses 1, and 7,, of dissimilar isotropic wedges with a half plane bonded to a quarter plane
for 6 =07, 30° and 60°.

w*(r. —a) = W*(r)

Ty (r. ) = 1(r). (24)

The solutions of stresses in the transformed form is given by

*
i 0) = — ’;) {sp* W'* sin (s) + RI(s) cos (s2)] sin (s0)

+[su* W* cos (sP)+ 1(s) sin (sx)] cos (s0)} (25)

£y, 0) = g (s b sin (sf) + £(s) cos (s)] cos (s0)
— [su* W* cos (sf)+1(s) sin (su)] sin (s0)} (26)
where
D(s) = u* cos (as) cos (fis) — p sin (as) sin (fis). 27
The roots of (27) must satisfy the equation

RIz05 R!z15 R=20
ol=T7 B=1’/2

Stresses
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r

Fig. 6. Stresses 1, and t,, of dissimilar isotropic wedges with a half plane bonded to a quarter plane
for @ = 75°, 80" and 85°.
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Fig. 7. Dependence of the order of stress singularity 4 on x. ff and R(=0.5) for the traction-
displacement boundary condition.

cos [(x+f)s] _I-R N
cos [(x—f)s]  1+R’ (2%)

Equation (28) does not change by interchanging x and f, hence the order of stress singularity
4 as shown in Figs 7 and 8 is symmetric with respect to the line x = fi. For a+ff = ¢, then
the case of equal angle o = fi = ¢/2 has the largest value of 4 and hence the most severe
stress singularity. For equal angle wedges, that is 2 = ff, we have cot” sx = p/u*. Hence the
order of singularity for this case is

For the crack geometry, « = ff = n, the order of stress singularity is in agreement with that
obtained by Ting (1986), that is

Shear Modulus’ Ratio =0.1
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Fig. 8. Dependence of the order of stress singularity 4 on x. ff and R(= 0.1) for the traction--
displacement boundary condition.
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Fig. 9. The angular distribution of stresses t,, and r,, of the asymptotic behavior as r — 0 for the
traction-displacement boundary condition (2 = x. f = /2, R = 0.5).

{ i 12
l=i+;ttan~‘ (}%) . (29)

The dependence of the order of singularity 4 on the material property for the interfacial
critek is shown in (29), if the two materials are the sume (i = g*), then we have the familiar
value of 4 equal to 3/4. The asymptotic behavior of the stress ficld is given by

B
hmt =limr “" (s =), (5, 0) = r? hm [c.os (s + R cot (sa) sin (sth), (30)

R

limz,, = !Lm rr s~ ) (s 0) = 7t hm {sm (st) — R cot (as) cos (s?)]. (31)
lim t% = limr~ D (g —5,)T%(s5,0) = r"llm D(( )R[cm (+0) +cot (as) sin (s0)]. (32)
_ _ B(s)
hm = hfnr CF D YR ) = r? hm mR[&m (s0) —cot (s} cos (0)], (33)
where
B(s) = — u[su* W* cos (sf) + i(s) sin (sa)].

The stress component 1, is continuous at 0 =0 (t.(r,07) = 1,.(r,0%)) while 1., is dis-
continuous there. From (30) and (32), the jump value of t,. will be

hm[r_(,- 0*)—t2(r,07)] = (1 =R)r-*:*H B(‘:)

4
DG (34)

The angular dependence of stresses near the wedge apexfora = n. f = n/2and R = 0.5,
2.0 are shown in Figs 9 and 10.

Case 1. Displacement—displacement boundary condition
We consider displacements prescribed at the boundary faces § = —a and 8 = § of the
form,

548 2%:18-€
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Fig. 10. The angular distribution of stresses z,. and t,, of the asymptotic behavior as r — 0 for
traction-displacement boundary condition (x = n. § = /2. R = 2.0).

w¥(r, —a) = W*(r).
w(r, 3} = W(r). 35)

The stress solution in the transformed form will be

i.(s.0) = — ‘D" (O [W cos (sa) — W* cos (sp)] sin (s0)
+ [ sin (sa) + p* W* sin (sM)] cos (st}
To.(s,0) = }’; [ [W cos (sx) — W* cos (sf)] cos (s0)
— [ W sin (so) 4 p* W* sin (sf)]} (36)
where
D(s) = u* sin (sff) cos (sa) +u cos (sf) sin (s2), 37N
then D(s) = 0 yields

sin [(a+f)s]  1-1/R
sin [(x—=f)s] ~ 1+ /R’

(38)

Equation (38) has exactly the same form as (23) except replacing R with 1/R. The asymptotic
stress field is very similar to that in (30)~(33) except that B(s) is replaced by C(s) = —su[ul
sin (sa) + pu*W* sin (sff)] and D’(s) = (u*f+ ua) cos (sx) cos (sff) — (u*a+ uff) sin (s2) sin
(sf).

4. STRESS SINGULARITIES AT ANISOTROPIC BIMATERIAL WEDGE

In this section, the problem for two dissimilar anisotropic wedges of arbitrary angle is
formulated. The method employs the complex representation of the antiplane anisotropic
elasticity solution in conjunction with a generalization of the Mellin transform. This method
has been used by Bogy (1972) and Kuo and Bogy (1974a,b) on the in-plane problems.
Attention is also focused on the dependence of the order of the power singularities in the
stress field at the apex on the wedge angle and material constants. If the plane of elastic
symmetry is assumed to be normal to the - axis, then there are only three relevant cocefficients
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Css. €35 and ¢ss to be considered. The stress components are related to the displacement as
follows

ow ow

fy_- = Ca4 5_}: +C45 'é';q (39)
cw ow

Ty =0456_y‘ +Css'5;- (40)

The corresponding displacement equation of equilibrium is

&w &w w
f'ssa\__z +2f455;é;+€44€;:‘=0- “n

The governing equation (41) can be solved in the complex plane = = x+py such that
w(x.y) = 2 Re [U(2)]. (42)

where [ is an arbitrary function of = and p is a value dependent on the elasticity constants.
Substitution of (42) into (41) vields p must satisfy the characteristic equation

. ('44[’2+2('4§P+C55 = (. (43)
Henee

. - ¥
-y k l\ﬂ'.u"ﬁ —(ces)”
l) = s P SR s
Cya
It is expedient to define

$() = iy/csacss = (eas)’? ‘:,U , ()
50 that the sheuar stresses may be written simply as
T = —(pd+5d), (43)
1,. = o+, (46)
where the overline denotes the complex conjugate. Consider the stress transformation
Ty, = 1,, cos 0~ sin 0, (47)
T,. =1,. sin 0+, cos 0. (48)

The solution of the problem is obtained by use of an integral transform which is a
complex analogy to the standard Mellin transform. Following a procedure similar to Bogy
(1972), let U(s) be defined by

O(s) = j U(:)7" ' dz = (cos O+ p sin 0)"[ Ui)yr-"dr (49)
0 0

in which the path of integration is along a ray of fixed # and s is a complex transform
parameter. We obtain also from the conjugate of (49)
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(f{ f O(Z ' d = (cos 6+ sin 8)‘f C3r ' dr. (50
(]

0

From a formal integration by parts and with appropriately assumed behavior as r — 0 and
* ., we have

i g sU(s)
L U dr= - {cos 8+p sin Gy " Gn
< . s[af'(s)
3 dr = - 52
J; v dr {cos @+p sin Gyt G2

If the integral operation is applied to (42) and (47) and use is made of (49)-(52) there
follows

sc‘f(.s) sé(s)
(s = 20, VO (54)

Hy t @y
in which
C = [eaacss=(cgs) 13, T(0) = (cos O+ p sin 0).
In the same definition as the isotropic case, 7. (s, 0) is the Mellin transform with respect
torofrr, (r,0). The traction prescribed boundary conditions as shown in (16) in conjunction

with (533}, (54) yiclkd for the determination of the four unknowns l}’(x}. U*(s) cte., for the
tfollowing inhomogencous system of four cquations,

crir—crO*—cO+cl=o.
O*+0*-0-0=0,
O+ g+ %(s)

l

H(—a)  H(—2) —iC*s’
o 0 i .
AR AR~ —ics )

This system can be casily solved and the cxpressions for ,.(s, 0}, w(s, ) now follow directly
from substitution of (55) into {53) and (54). This compictes the formal solution for the
transforms of the stress and displacement components. As discussed in the isotropic material
case in the previous scction, the dependence of the order of the stress ficld singularity on
the wedge angle and the material parameters is determined by the pole of the meromorphic
function 7,.{s, #) ctc., or the location of the zero of the following cquation

(@—1) sin [(E—ms]+(@+1) sin [(§+n)s] = 0.
or

sin [(E+ms] _ 1-0

sn[G—ms] 150" (26)

where
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0= Vv C’:«Cgs—(ds)z’ %))

C“C”—(L“g):

V€3t —(cts)? sin a (58)

tan &= : .
¢ c¥; cos 2+c¥s sin a
/C4sCss—(Ca5)* sin
tan n= N\ C44lss ( JS) ﬂ (59)

€35 €08 f—cyssin B

It is surprising that (56) has exactly the same functional form as (23) for the isotropic
case. Here & and 7 are called the effective wedge angle that are defined in (58) and (59). Q
is the ratio of material constants of two wedges defined in (§7). For the isotropic case,
cis=0and ¢,y = ¢s5 = . we have @ = u*/u = R, £ =« and n = §, then (56) reduces to
the isotropic solution as shown in (23). For the interfacial crack problem, o = f = n, we
have an effective wedge angle & = n = . so that an interfacial crack in a general anisotropic
material in the antiplane problem also gives rise to the square root singularity. As the order
of singularity in the present case shares the same feature as that in the isotropic case. the
discussion will not be repeated here. However, it is worth mentioning again that the order
of the singularity for the anisotropic bimaterial wedge is real for all cases, and that oscillatory
singular behavior is not presented.

The problem of traction prescribed on one face with displacement prescribed on the
other as shown in the boundary condition (24) can be analyzed in a similar way. The result
1

cos [(E+ms]_ 1-Q
e e 60
cos [(E—n)s] 14Q (€0)

Again, (60) has cxactly the same functional form as (28) for Q, € and n defined in
(57) (59). For the special case of the interfacial crack problem, @ = ff = x, the order of the
stress singularity can be expressed as follows,

. . ]
+_l_ tan " [:_‘_ii‘.ii_.gfjﬁ;] (61
n N cticts —(c3s)

Finully, for prescribed displucements at both boundary faces as indicated in (35), the
order of the stress singularity is obtained from solving the following equation

A=

bl | v

sin [(E+n)s] _1-1/Q
sin [(G—n)s] ~ 1+1/Q°

(62)

5. CONCLUDING REMARKS

The problem of antiplune shear for dissimilar anisotropic bimaterial wedges was solved
by a straightforward application of the Mellin transform. Emphasis is placed on the
investigation of the order of the singularity and the angular dependence in the stress ficld
at the apex. It is shown in this paper that the order of the stress singularity 4 is always real
for the antiplane anisotropic dissimilar wedge. This is a quite different matter from the in-
planc case. in which 2 may be complex. If an effective angle is introduced in the analysis
for the anisotropic case, then the characteristic equation which determines the order of the
stress singularity, has the same functional form as that for the isotropic case. These results
may simplify analysis of the antiplane anisotropic wedge problem.

Explicit solutions of the order of stress singularity were obtained for some special
cascs, viz. equal angle wedge and interfacial crack problems. It has been shown that the
familiar square root singularity is obtained for dissimilar anisotropic materials with a crack
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having traction~traction and displacement—displacement boundary conditions. While for
the traction--displacement boundary condition, the order of stress singularity of dissimilar
anisotropic materials with cracks will depend on the material constants. For the anisotropic
crack problem of one material only, the order of stress singularity will be 3/4. the same as
for the isotropic case.
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APPENDIX
From c¢yn (23}

sin [(x+f)s) _ 1-R

Gnla=pl T TF R Ah
We have
sin [(x+ N3] = Q sin {(x ], (A2)
where
t~R
- = & 1L
I<Q RS i

Assume (A2) has a complex root of the form s = x+iy and x # 0, y % 0, then (A2) can be rewritten as follows

sin [(x+ x| cosh [(x+f) v} +1 cos [(x+ P)x] sink [(x+ )]
= 0 sin [(2 = B)x] cosh [(x~ )] +i€Q cos {(x— M) sinh [x=H ¥ (A3)

Equating the real and imaginary parts of (AJ3) yields
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sin [(z+ B)x] cosh [(2+ )13} = Q sin [(x—~f)x] cosh {(x—FH¥]. (A
cos [(x+ B)x] sinh [{a+ B y] = Q cos [(x~ ] sinh [(x- 5] {A%)

Then (Ad4) and {AS) can be combined into the following equation

cosh [(z+8)¥]

sin® [(z+ﬁ)xl{ siah [(H'm'vl} = (A6)

cosh ((z— ) y]} +cos? [(a+B)] {sinh (G=P
Since [(x+ B)¥| > [(x~B) ¥l. hence
cosh [(x+ By F
{cosh (G- ﬂ)y}} >t
and

{sinh {(z+£)y1}: o1
sich [(x—8)y] '

which makes the left hand side of (A6) greater than 1. But the right hand side of (A6) is always less than { and
we have a contradiction. If x = 0 and y # 0, from (A3) we also get a contradictory resuit. Hence the only possibility
of finding the solution of (A2) is for x # 0, y = 0 which indicates that the order of stress singularity is real and
this completes the proof.



